Напишите нам

Сварка полимерных материалов (часть 2)

Ультразвуковая сварка

Способ основан на нагреве соединяемых поверхностей в результате превращения энергии механических ультразвуковых колебаний с частотой 15—50 кгц в тепловую. Соединяемые детали зажимают между концом инструмента и опорой. Сварка происходит в момент подачи ТВЧ от ультразвукового генератора на обмотку вибратора, выполненного из магнитострикционного или пьезокерамического материала. Продольные высокочастотные механические колебания, возникающие в этом материале вследствие магнитострикционного или пьезоэлектрич. эффекта, передаются через стержневые волновод и инструмент в зону шва.

Для ультразвуковой сварки характерны следующие основные особенности:

  • концентрация тепловыделения в зоне шва и связанные с этим высокая скорость образования шва и минимальное изменение свойств материала;
  • возможность сварки загрязненных поверхностей, т. к. все инородные частицы удаляются из зоны шва в результате сдвиговых колебаний;
  • возможность подвода механической энергии на значительном расстоянии от места сварки, что позволяет сваривать детали больших толщин и в труднодоступных местах (при этом второй электрод не требуется).

Благодаря перечисленным достоинствам ультразвуковая сварка развивается более интенсивно, чем другие методы сварки.

При сварке ряда термопластичных материалов, например полиэтилентерефталатных пли полиамидных пленок, соединение образуется при более низких температурах, чем Тт. Предполагают, что под воздействием ультразвука в микрообъемах происходит механическая деструкция полимера, способствующая снижению Тт. При этом не исключен также мгновенный и локальный нагрев до Тт, не фиксируемый термопарами. При ультразвуковой сварке возможно образование химических связей в переходном слое.

В зависимости от способа подвода энергии к зоне шва ультразвуковая сварка разделяется на контактную, при которой место ввода ультразвука удалено от соединяемых поверхностей не более чем на 5 мм, и дистанционную, при которой оно удалено от зоны шва на большее расстояние. Последний способ применим для жестких термопластов с модулем упругости > 2. 103 Мн/м2 (> 2 -104 кгс/см2).

При ультразвуковой сварке детали можно сваривать в отдельных точках (точечная сварка), одновременно по всему контуру шва (контурная сварка), а также при шаговом или непрерывном перемещении материала или инструмента. При контурной сварке с помощью одного инструмента может быть получен шов в виде прямоугольника с периметром 200—240 мм или круглый шов диаметром до 120 мм. При толщине детали более 2 мм и габаритах, превышающих 12х12 см, применяют одновременно несколько инструментов или ведут процесс шаговым методом. При непрерывной сварке нижнюю опору (напр., в виде стакана) заменяют роликом или применяют скользящий инструмент. Тонкие пленки сваривают между прокладками из неразмягчающегося материала, например из бумаги или целлофана толщиной 40—60 мкм. Ультразвуковым методом чаще всего сваривают полиэтилентерефталатные пленки, в том числе металлизированные. Сваркой пленок толщиной 20—40 мкм при оптимальном режиме (амплитуда смещения рабочего конца инструмента 25—30 мкм, усилие прижима 12 н (1,2 кгс), частота 50 кгц) получают швы, прочность которых при сдвиге составляет 60—70% от прочности материала при растяжении.

Герметичное соединение по всему контуру шва при сварке толстостенных изделий обеспечивается созданием на контактирующих участках выступов (концентраторов напряжений) различной формы, а иногда и углублений. Для большинства пластмасс оптимальная амплитуда составляет 20—40 мкм, продолжительность точечной сварки 1—9 сек, давление 1—4 Мн/м2 (10—40 кгс/см2) для жестких и 0,5—2,0 Мн/м2 (5—20 кгс/см2) для мягких пластмасс; толщина последних должна быть 0,2—1,0 мм. Сварку ведут на резонансной частоте акустической системы. Стабильная и надежная сварка обеспечивается при контроле продолжительности ультразвукового импульса по изменению амплитуды опоры, в которую встроен магнитоупругий датчик.

Сварка трением

При использовании этого способа детали нагреваются в результате выделения теплоты трения. В зависимости от способа создания трения различают сварку вращением, инерционную сварку и сварку вибротрением.

При сварке вращением в контакт приводят соосно закрепленные детали, одна из которых неподвижна, а другая вращается. После достижения необходимой температуры (обычно через 3—25 сек после начала вращения) деталь останавливают и охлаждают сварной шов под давлением. Иногда, в частности при сварке длинных деталей, используют вращающийся промежуточный элемент (в этом случае обе соединяемые детали закрепляют неподвижно), который может быть изготовлен из металла, например алюминия, или из пластмассы. Элемент из пластмассы оставляют в сварном шве, а металлический удаляют, после чего соединяемые детали приводят в контакт и охлаждают.

Сваркой вращением соединяют стержни и трубы, а также присоединяют цилиндрические детали к плоским и фасонным. Высокая скорость образования шва — основное достоинство этого метода. Прочность соединений, полученных при оптимальных режимах сварки (табл. 3), близка к прочности свариваемого материала.

Таблица 3. Оптимальные режимы сварки термопластов вращением
Термопласт Скорость вращения м/ мин Давление, Мн/м2 (кгс/см2) Мин прочность шва % от пр-ти материала
Полиэтилен низкой плотности 90-180 0, 2-0 ,5 (2-5) 80
Полипропилен 90-180 0, 2-0, 5 (2-5) 80
Поливинилхлорид 100-150 0 ,3-0, 8(3-8) 70
Полиформальдегид 100-250 0, 6-1 ,0 (6-10) 70
Полифениленоксид 30-50 1, 0-1, 5 (10-15) 60
Поликарбонат 12-15 0, 5-0, 8(5-8) 80

Установки для сварки вращением изготовляют на базе токарных или сверлильных станков.

Инерционная сварка происходит при вращении деталей за счет энергии, запасаемой вращающимся маховиком (его масса составляет 1—2 кг на 1 см2 свариваемой поверхности). Длительность нагрева (время торможения) обычно менее 2 сек, суммарное уменьшение размеров соединяемых деталей, обусловленное интенсивным трением, не превышает десятых долей мм.

Сварка вибротрением осуществляется в результате прямо- или криволинейных колебаний одной летали относительно другой при их плотном контакте. Частота колебаний составляет 50—400 гц, максимальная амплитуда 3—6 мм, давление контакта 2—15 Мн/м2 20—150 кгс/см2). Продолжительность сварки, не зависящая от толщины детали,— несколько секунд.

Сварка с применением ИК-излучения

Этот способ сварки основан на нагреве соединяемых поверхностей в результате передачи полимерному материалу энергии от источника ИК-лучей (большинство полимеров поглощает излучение с длиной волны более 2,5 мкм). Для ускорения прогрева на свариваемые поверхности наносят слой вещества, хорошо поглощающего энергию ИК-лучей, или укладывают соединяемые пленки на подложку из материала, поглощающего эти лучи. Последний способ может быть отнесен к контактно-инфракрасной сварке. Для сварки труб и профилей встык или пленок и листов внахлестку применяют нагревательный элемент с температурой 500—600°С. Соединяемые материалы располагают на расстоянии 0,5 мм от элемента. Для сварки плит с применением присадочного материала) и пленок применяют также галогено-кварцевые световые лампы, имеющие точечный или ленточный источник излучения. Последнее может быть направлено непосредственно в зону шва или на внешнюю поверхность свариваемого пакета.

Лазерная сварка

Луч лазера, сфокусированный в пятно диаметром ~1 мм, направляется перпендикулярно свариваемому пакету. Для сварки пригодны СО2-лазеры, создающие практически непрерывное излучение, которое хорошо поглощается полимерами, и обеспечивающие непрерывный процесс сварки. Лазерная сварка особенно пригодна для пленок толщиной 12—500 мкм. При проплавлении слегка натянутого материала возможно его одновременное разрезание. С помощью мощных лазеров можно сваривать листы толщиной до 250 мм.

Сварка с помощью растворителей

Способ применяют в тех случаях, когда тепловая сварка может нарушить форму и изменить размеры деталей, а также в мелкосерийном производстве и при необходимости соединения прозрачных термопластов (полиакрилатов, поликарбоната, полистирола), сварные швы которых должны иметь не только достаточно высокую прочность, но и хороший внешний вид. При выборе растворителя исходят из того, чтобы разность между параметрами растворимости полимера и растворителя не превышала 2,5 (Мдж/мз)1/2[1,2(кал/смз) 1/2].

Основные операции технологического процесса сварки:

  • смачивание соединяемых поверхностей растворителем пли составом, содержащим растворитель (при соединении встык составом заполняют полость шва);
  • приведение поверхностей в контакт;
  • выдержка под давлением до момента затвердевания шва.

Помимо растворителя, применяют составы двух типов: раствор полимера в инертном растворителе (лаковая композиция) или раствор полимера в мономере (полимеризующаяся композиция), обеспечивающий наилучшее качество соединения.

Химическая сварка

Тепло, необходимое для химической сварки, наиболее целесообразно генерировать высокочастотным полем или ультразвуком. Благодаря высокой скорости и локальности нагрева сварка может быть закончена до того, как в материале начнутся нежелательные побочные процессы, например деструкция. Технология сварки не отличается принципиально от технологии высокочастотной или ультразвуковой диффузионной сварки. Выбор условий сварки определяется химической природой полимера.

Сварка отвержденных реактопластов возможна с участием функциональных групп, оставшихся в материале после его формования. Таким способом соединяют, например, детали из феноло-анилино-форм-альдегидных смол. При отсутствии в свариваемых материалах функциональных групп (например, отвержденные полиэфирные смолы) или при сварке деталей сложной конфигурации на соединяемые поверхности наносят присадочный материал, например пленку реактопласта на основе связующего, аналогичного связующему свариваемого материала, но с меньшей глубиной отверждения. Оптимальная напряженность поля при высокочастотной сварке реактопластов составляет 0,2—0,6 Мв/м, или кв/мм (такая напряженность обеспечивает температуру в зоне сварки в пределах 150—200 °С), продолжительность процесса — от десятков секунд до нескольких минут.

Химическая сварка резин осуществляется с помощью сшивающих (присадочных) агентов — перекисей, диаминов, диазосоединений и др., способных быстро реагировать с функциональными группами макромолекул каучука (двойными связями, водородом а-метиленовых групп и п,р.). На соединяемые поверхности наносят обычно растворы этих агентов в инертных (ацетон, хлороформ) или активных (например, стирол) растворителях. Благодаря этому достигается более равномерное распределение сшивающего агента и упрощается его дозирование. Резины из хлоропренового каучука, содержащего в макромолекуле подвижные атомы хлора, могут свариваться без применения сшивающих агентов. Важное значение при сварке резин имеет подготовка соединяемых поверхностей, в частности очистка их от ингибиторов и др. ингредиентов, мигрирующих на поверхность резины при ее хранении. Температура химической сварки резин определяется реакционной способностью сшивающих агентов. Давление сварки, зависящее от упруго-релаксационных свойств материала и от количества летучих продуктов в зоне соединения, составляет 1,0—2,5 Мн/м2 (10—25 кгс см2). Продолжительность процесса изменяется в тех же пределах, что и при сварке реактопластов.

Химическая сварка термопластов, сшитых, например, под действием ионизирующего излучения, осуществляется с помощью присадочных агентов, способных образовать переходный слой, структура которого аналогична структуре остального объема материала. Так, при сварке трехмерного полиэтилена в качестве присадочного агента используют инициаторы радикального типа (перекиси, пербораты, персульфаты, азосоединения и др.), которые предварительно вводят в термопласт (полипропилен, необлученный или облученный малыми дозами радиации полиэтилен) или наносят на одну или обе соединяемые поверхности из раствора в подходящем растворителе.

Трехмерный поливинилхлорид, поперечные связи в котором образованы с участием триаллилцианурата, может свариваться в результате только теплового воздействия высокой интенсивности или с помощью диаминов.

Химическая сварка особенно целесообразна при соединении ориентированных пленок термопластов, сварные швы которых должны сохранять физико-механические свойства материала. Наиболее пригодные присадочные агенты для сварки полиамидных пленок — многоосновные органические компоненты и их хлорангидриды, полиэтилентерефталатных пленок — диизоцианаты или органические перекиси. Пленки и ткани из лестничных полимеров, например полипиромеллитимида можно сваривать с помощью диаминов или диазоцианатов. Выбор присадочных агентов и условий химической сварки термопластов (особенно ориентированных и кристаллических) определяется следующими требованиями:

  • темп-ра при сварке должна быть ниже темп-ры плавления кристаллич. фазы полимера;
  • в соединяемых слоях материала должно быть обеспечено пластическое течение аморфной фазы;
  • длительность нагревания зоны шва выше темп-ры стеклования полимера должна быть меньше, чем период до начала его разориентации при данной темп-ре.

Rambler's Top100 Яндекс.Метрика